Jordan -derivations on standard operator algebras
LetH be a real or complex Hilbert space with dim(H) > 1, B(H) be algebra of all bounded linear operators on H and A(H) ? B(H) be a standard operator algebra on H. If D : A(H) ? B(H) is a linear mapping satisfying D(An+1) = Pn i=0 AiD(A)(A*)n?i for all A ? A(H), then D is a Jordan *-derivation on...
Gespeichert in:
Veröffentlicht in: | Filomat 2023, Vol.37 (1), p.37-41 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LetH be a real or complex Hilbert space with dim(H) > 1, B(H) be algebra of
all bounded linear operators on H and A(H) ? B(H) be a standard operator
algebra on H. If D : A(H) ? B(H) is a linear mapping satisfying D(An+1) = Pn
i=0 AiD(A)(A*)n?i for all A ? A(H), then D is a Jordan *-derivation on A(H).
Later, we discuss some algebraic identities on semiprime rings. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2301037A |