Cohomology classification of spaces with free S1 and S3-actions
This paper gives the cohomology classification of finitistic spaces X equipped with free actions of the group G = S3 and the cohomology ring of the orbit space X/G is isomorphic to the integral cohomology quaternion projective space HPn. We have proved that the integral cohomology ring of X is isomo...
Gespeichert in:
Veröffentlicht in: | Filomat 2022, Vol.36 (20), p.7021-7026 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper gives the cohomology classification of finitistic spaces X
equipped with free actions of the group G = S3 and the cohomology ring of
the orbit space X/G is isomorphic to the integral cohomology quaternion
projective space HPn. We have proved that the integral cohomology ring of X
is isomorphic either to S4n+3 or S3 ? HPn. Similar results with other
coefficient groups and for G = S1 actions are also discussed. As an
application, we determine a bound of the index and co-index of cohomology
sphere S2n+1 (resp. S4n+3) with respect to S1-actions (resp. S3-actions). |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2220021K |