On the bounds of zeroth-order general Randic index
The zeroth-order general Randic index, 0R?(G), of a connected graph G, is defined as 0 P R?(G) = ni =1 d?i , where di is the degree of the vertex vi of G and ? arbitrary real number. We consider linear combinations of the 0R?(G) of the form 0R?(G) ? (? + ?)0R??1(G) + ?? 0R??2(G) and 0R?(G) ? 2a 0R??...
Gespeichert in:
Veröffentlicht in: | Filomat 2022, Vol.36 (19), p.6443-6456 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The zeroth-order general Randic index, 0R?(G), of a connected graph G, is
defined as 0 P R?(G) = ni =1 d?i , where di is the degree of the vertex vi
of G and ? arbitrary real number. We consider linear combinations of the
0R?(G) of the form 0R?(G) ? (? + ?)0R??1(G) + ?? 0R??2(G) and 0R?(G) ? 2a
0R??1(G) + a2 0R??2(G), where a is an arbitrary real number, and determine
their bounds. As corollaries, various upper and lower bounds of 0R?(G) and
indices that represent some special cases of 0R?(G) are obtained. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2219443M |