On Erdös-lax inequality concerning polynomials

Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2022, Vol.36 (18), p.6123-6128
Hauptverfasser: Wani, Irfan, Nazir, Ishfaq, Mir, Mohammad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6128
container_issue 18
container_start_page 6123
container_title Filomat
container_volume 36
creator Wani, Irfan
Nazir, Ishfaq
Mir, Mohammad
description Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic.
doi_str_mv 10.2298/FIL2218123W
format Article
fullrecord <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2218123W</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2218123W</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f4886d5b9fec3854d0eb879809f7bfec62ad1c059cde6fd1a69861bfd8cf73b03</originalsourceid><addsrcrecordid>eNpNj8tKAzEUQIMoOFZX_sDsJfbmMXkspbRaGOimxeWQyUMi00xNKjg_5g_4Y1Z04erAWRw4CN0SuKdUq_lq3VJKFKHs-QxVlIPAoBk7RxWwhuOGKLhEV6W8AnAquKzQfJPqZXZfnwUP5qOOyb-9myEep9qOyfqcYnqpD-MwpXEfzVCu0UU4wd_8cYZ2q-V28YTbzeN68dBiSyUcceBKCdf0OnjLVMMd-F5JrUAH2Z-coMYRC422zovgiBFaCdIHp2yQrAc2Q3e_XZvHUrIP3SHHvclTR6D7ee3-vbJvp1ZIMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Erdös-lax inequality concerning polynomials</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wani, Irfan ; Nazir, Ishfaq ; Mir, Mohammad</creator><creatorcontrib>Wani, Irfan ; Nazir, Ishfaq ; Mir, Mohammad</creatorcontrib><description>Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| &lt; k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2218123W</identifier><language>eng</language><ispartof>Filomat, 2022, Vol.36 (18), p.6123-6128</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-f4886d5b9fec3854d0eb879809f7bfec62ad1c059cde6fd1a69861bfd8cf73b03</citedby><cites>FETCH-LOGICAL-c270t-f4886d5b9fec3854d0eb879809f7bfec62ad1c059cde6fd1a69861bfd8cf73b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Wani, Irfan</creatorcontrib><creatorcontrib>Nazir, Ishfaq</creatorcontrib><creatorcontrib>Mir, Mohammad</creatorcontrib><title>On Erdös-lax inequality concerning polynomials</title><title>Filomat</title><description>Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| &lt; k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNj8tKAzEUQIMoOFZX_sDsJfbmMXkspbRaGOimxeWQyUMi00xNKjg_5g_4Y1Z04erAWRw4CN0SuKdUq_lq3VJKFKHs-QxVlIPAoBk7RxWwhuOGKLhEV6W8AnAquKzQfJPqZXZfnwUP5qOOyb-9myEep9qOyfqcYnqpD-MwpXEfzVCu0UU4wd_8cYZ2q-V28YTbzeN68dBiSyUcceBKCdf0OnjLVMMd-F5JrUAH2Z-coMYRC422zovgiBFaCdIHp2yQrAc2Q3e_XZvHUrIP3SHHvclTR6D7ee3-vbJvp1ZIMQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wani, Irfan</creator><creator>Nazir, Ishfaq</creator><creator>Mir, Mohammad</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>On Erdös-lax inequality concerning polynomials</title><author>Wani, Irfan ; Nazir, Ishfaq ; Mir, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f4886d5b9fec3854d0eb879809f7bfec62ad1c059cde6fd1a69861bfd8cf73b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wani, Irfan</creatorcontrib><creatorcontrib>Nazir, Ishfaq</creatorcontrib><creatorcontrib>Mir, Mohammad</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wani, Irfan</au><au>Nazir, Ishfaq</au><au>Mir, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Erdös-lax inequality concerning polynomials</atitle><jtitle>Filomat</jtitle><date>2022</date><risdate>2022</risdate><volume>36</volume><issue>18</issue><spage>6123</spage><epage>6128</epage><pages>6123-6128</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| &lt; k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic.</abstract><doi>10.2298/FIL2218123W</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2022, Vol.36 (18), p.6123-6128
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL2218123W
source Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
title On Erdös-lax inequality concerning polynomials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Erd%C3%B6s-lax%20inequality%20concerning%20polynomials&rft.jtitle=Filomat&rft.au=Wani,%20Irfan&rft.date=2022&rft.volume=36&rft.issue=18&rft.spage=6123&rft.epage=6128&rft.pages=6123-6128&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2218123W&rft_dat=%3Ccrossref%3E10_2298_FIL2218123W%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true