On Erdös-lax inequality concerning polynomials
Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cn...
Gespeichert in:
Veröffentlicht in: | Filomat 2022, Vol.36 (18), p.6123-6128 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6128 |
---|---|
container_issue | 18 |
container_start_page | 6123 |
container_title | Filomat |
container_volume | 36 |
creator | Wani, Irfan Nazir, Ishfaq Mir, Mohammad |
description | Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic. |
doi_str_mv | 10.2298/FIL2218123W |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL2218123W</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_2298_FIL2218123W</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-f4886d5b9fec3854d0eb879809f7bfec62ad1c059cde6fd1a69861bfd8cf73b03</originalsourceid><addsrcrecordid>eNpNj8tKAzEUQIMoOFZX_sDsJfbmMXkspbRaGOimxeWQyUMi00xNKjg_5g_4Y1Z04erAWRw4CN0SuKdUq_lq3VJKFKHs-QxVlIPAoBk7RxWwhuOGKLhEV6W8AnAquKzQfJPqZXZfnwUP5qOOyb-9myEep9qOyfqcYnqpD-MwpXEfzVCu0UU4wd_8cYZ2q-V28YTbzeN68dBiSyUcceBKCdf0OnjLVMMd-F5JrUAH2Z-coMYRC422zovgiBFaCdIHp2yQrAc2Q3e_XZvHUrIP3SHHvclTR6D7ee3-vbJvp1ZIMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>On Erdös-lax inequality concerning polynomials</title><source>Jstor Complete Legacy</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wani, Irfan ; Nazir, Ishfaq ; Mir, Mohammad</creator><creatorcontrib>Wani, Irfan ; Nazir, Ishfaq ; Mir, Mohammad</creatorcontrib><description>Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL2218123W</identifier><language>eng</language><ispartof>Filomat, 2022, Vol.36 (18), p.6123-6128</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c270t-f4886d5b9fec3854d0eb879809f7bfec62ad1c059cde6fd1a69861bfd8cf73b03</citedby><cites>FETCH-LOGICAL-c270t-f4886d5b9fec3854d0eb879809f7bfec62ad1c059cde6fd1a69861bfd8cf73b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4010,27900,27901,27902</link.rule.ids></links><search><creatorcontrib>Wani, Irfan</creatorcontrib><creatorcontrib>Nazir, Ishfaq</creatorcontrib><creatorcontrib>Mir, Mohammad</creatorcontrib><title>On Erdös-lax inequality concerning polynomials</title><title>Filomat</title><description>Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic.</description><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNj8tKAzEUQIMoOFZX_sDsJfbmMXkspbRaGOimxeWQyUMi00xNKjg_5g_4Y1Z04erAWRw4CN0SuKdUq_lq3VJKFKHs-QxVlIPAoBk7RxWwhuOGKLhEV6W8AnAquKzQfJPqZXZfnwUP5qOOyb-9myEep9qOyfqcYnqpD-MwpXEfzVCu0UU4wd_8cYZ2q-V28YTbzeN68dBiSyUcceBKCdf0OnjLVMMd-F5JrUAH2Z-coMYRC422zovgiBFaCdIHp2yQrAc2Q3e_XZvHUrIP3SHHvclTR6D7ee3-vbJvp1ZIMQ</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Wani, Irfan</creator><creator>Nazir, Ishfaq</creator><creator>Mir, Mohammad</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>2022</creationdate><title>On Erdös-lax inequality concerning polynomials</title><author>Wani, Irfan ; Nazir, Ishfaq ; Mir, Mohammad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-f4886d5b9fec3854d0eb879809f7bfec62ad1c059cde6fd1a69861bfd8cf73b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wani, Irfan</creatorcontrib><creatorcontrib>Nazir, Ishfaq</creatorcontrib><creatorcontrib>Mir, Mohammad</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wani, Irfan</au><au>Nazir, Ishfaq</au><au>Mir, Mohammad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On Erdös-lax inequality concerning polynomials</atitle><jtitle>Filomat</jtitle><date>2022</date><risdate>2022</risdate><volume>36</volume><issue>18</issue><spage>6123</spage><epage>6128</epage><pages>6123-6128</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic.</abstract><doi>10.2298/FIL2218123W</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-5180 |
ispartof | Filomat, 2022, Vol.36 (18), p.6123-6128 |
issn | 0354-5180 2406-0933 |
language | eng |
recordid | cdi_crossref_primary_10_2298_FIL2218123W |
source | Jstor Complete Legacy; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | On Erdös-lax inequality concerning polynomials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T13%3A42%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20Erd%C3%B6s-lax%20inequality%20concerning%20polynomials&rft.jtitle=Filomat&rft.au=Wani,%20Irfan&rft.date=2022&rft.volume=36&rft.issue=18&rft.spage=6123&rft.epage=6128&rft.pages=6123-6128&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL2218123W&rft_dat=%3Ccrossref%3E10_2298_FIL2218123W%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |