On Erdös-lax inequality concerning polynomials

Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cn...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2022, Vol.36 (18), p.6123-6128
Hauptverfasser: Wani, Irfan, Nazir, Ishfaq, Mir, Mohammad
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2218123W