On Erdös-lax inequality concerning polynomials
Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cn...
Gespeichert in:
Veröffentlicht in: | Filomat 2022, Vol.36 (18), p.6123-6128 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recently Milovanovic et al. [Bulletin T.CLIII de l?Aca?mie serbe des sciences et des arts - 2020.] proved that if P(z) ? Pn with no zeros in |z| < k, k ? 1, then, |P?(z)| ? ?P?/2 [n ? {n(k ? 1/k + 1) + 2/k + 1 (|c0| ? kn|cn|/|c0| + kn|cn|)} |P(z)|2 ?P?2], |z| = 1, where P(z) = c0 + c1z + ... + cnzn ? Pn is a polynomial of degree n. In this paper, we obtain some results concerning the class of polynomials having s?fold zero at origin. These results not only generalizes but also refines many well-known results due to Milovanovic. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2218123W |