Approximating functions in the power-type weighted variable exponent Sobolev space by the hardy averaging operator
We investigate the problem of approximating function f in the power-type weighted variable exponent Sobolev space Wr,p(.) ?(.) (0,1), (r = 1, 2, ...), by the Hardy averaging operator A (f) (x) = 1/x ?x0 f(t)dt. If the function f lies in the power-type weighted variable exponent Sobolev space Wr,p(.)...
Gespeichert in:
Veröffentlicht in: | Filomat 2022, Vol.36 (10), p.3321-3330 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate the problem of approximating function f in the power-type
weighted variable exponent Sobolev space Wr,p(.) ?(.) (0,1), (r = 1, 2,
...), by the Hardy averaging operator A (f) (x) = 1/x ?x0 f(t)dt. If
the function f lies in the power-type weighted variable exponent Sobolev
space Wr,p(.) ?(.)(0, 1), it is shown that A||(f)?f|| p(.),?(.)?rp(.) ?
C ||f(r) p(.),?(.) , where C is a positive constant. Moreover, we consider
the problem of boundedness of Hardy averaging operator A in power-type
weighted variable exponent grand Lebesgue spaces Lp(.),? ?(.)(0,1). The
sufficient criterion established on the power-type weight function ?(.) and
exponent p(.) for the Hardy averaging operator to be bounded in these
spaces. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2210321A |