Cline’s formula and Jacobson’s lemma for g-Drazin inverse
We present new conditions under which Cline?s formula and Jacobson?s lemma for g-Drazin inverse hold. Let A be a Banach algebra, and let a,b ? A satisfying akbkak = ak+1 for some k ? N. We prove that a has g-Drazin inverse if and only if bkak has g-Drazin inverse. In this case, (bkak)d = bk(ad)2ak a...
Gespeichert in:
Veröffentlicht in: | Filomat 2021, Vol.35 (15), p.5083-5091 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present new conditions under which Cline?s formula and Jacobson?s lemma
for g-Drazin inverse hold. Let A be a Banach algebra, and let a,b ? A
satisfying akbkak = ak+1 for some k ? N. We prove that a has g-Drazin
inverse if and only if bkak has g-Drazin inverse. In this case, (bkak)d =
bk(ad)2ak and ad = ak[(bkak)d]k+1. Further, we study Jacobson?s lemma for
g-Drazin inverse in a Banach algebra under the preceding condition. The
common spectral property of bounded linear operators on a Banach space is
thereby obtained. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2115083C |