Some Mathematical Properties of the Geometric-Arithmetic Index/Coindex of Graphs
Let G = (V, E), V = {1, 2, ... , n}, be a simple connected graph of order n, size m with vertex degree sequence d(1) >= d(2) >= center dot center dot center dot >= d(n) > 0, d(i) = d(v(i)). The geometric-arithmetic topological index of G is defined as GA(G) = Sigma(i similar to j) 2 root...
Gespeichert in:
Veröffentlicht in: | Filomat 2021-01, Vol.35 (15), p.5045-5057 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let G = (V, E), V = {1, 2, ... , n}, be a simple connected graph of order n, size m with vertex degree sequence d(1) >= d(2) >= center dot center dot center dot >= d(n) > 0, d(i) = d(v(i)). The geometric-arithmetic topological index of G is defined as GA(G) = Sigma(i similar to j) 2 root d(i)d(j)/d(i)+d(j) , whereas thegeometric-arithmetic coindex as (GA) over bar (G) = Sigma(i(sic)j) 2 root d(i)d(j)/d(i)similar to d(j). New lower bounds for GA(G) and GA(G) in terms of some graph parameters and other invariants are obtained. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2115045S |