From euclid to corner sums - a trail of telescoping tricks

Euclid's algorithm is extended to binomials, geometric sums and corner sums. Two-sided non-commuting, non-constant linear difference equations will be solved, and the solution is applied to corner sums, thereby presenting an explicit formula for the generator of the bi-module spanned by the two...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2021, Vol.35 (14), p.4613-4636
Hauptverfasser: Patrício, Pedro, Hartwig, Robert E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Euclid's algorithm is extended to binomials, geometric sums and corner sums. Two-sided non-commuting, non-constant linear difference equations will be solved, and the solution is applied to corner sums, thereby presenting an explicit formula for the generator of the bi-module spanned by the two starting corner sums. Research partially financed by Portuguese Funds through FCT (Fundação para a Ciência e a Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2114613P