From euclid to corner sums - a trail of telescoping tricks
Euclid's algorithm is extended to binomials, geometric sums and corner sums. Two-sided non-commuting, non-constant linear difference equations will be solved, and the solution is applied to corner sums, thereby presenting an explicit formula for the generator of the bi-module spanned by the two...
Gespeichert in:
Veröffentlicht in: | Filomat 2021, Vol.35 (14), p.4613-4636 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Euclid's algorithm is extended to binomials, geometric sums and corner sums. Two-sided non-commuting, non-constant linear difference equations will be solved, and the solution is applied to corner sums, thereby presenting an explicit formula for the generator of the bi-module spanned by the two starting corner sums.
Research partially financed by Portuguese Funds through FCT (Fundação para a Ciência e a Tecnologia) within the Projects UIDB/00013/2020 and UIDP/00013/2020. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2114613P |