Generalized cline’s formula for g-Drazin inverse in a ring
In this paper, we give a generalized Cline?s formula for the generalized Drazin inverse. Let R be a ring, and let a, b, c, d ? R satisfying (ac)2 = (db)(ac), (db)2 = (ac)(db), b(ac)a = b(db)a, c(ac)d = c(db)d. Then ac ? Rd if and only if bd ? Rd. In this case, (bd)d = b((ac)d)2d: We also present gen...
Gespeichert in:
Veröffentlicht in: | Filomat 2021, Vol.35 (8), p.2573-2583 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we give a generalized Cline?s formula for the generalized
Drazin inverse. Let R be a ring, and let a, b, c, d ? R satisfying (ac)2 =
(db)(ac), (db)2 = (ac)(db), b(ac)a = b(db)a, c(ac)d = c(db)d. Then ac ? Rd
if and only if bd ? Rd. In this case, (bd)d = b((ac)d)2d: We also present
generalized Cline?s formulas for Drazin and group inverses. Some weaker
conditions in a Banach algebra are also investigated. These extend the main
results of Cline?s formula on g-Drazin inverse of Liao, Chen and Cui (Bull.
Malays. Math. Soc., 37(2014), 37-42), Lian and Zeng (Turk. J. Math.,
40(2016), 161-165) and Miller and Zguitti (Rend. Circ. Mat. Palermo, II.
Ser., 67(2018), 105-114). As an application, new common spectral property of
bounded linear operators over Banach spaces is obtained. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2108573C |