On topological conjugacy of some chaotic dynamical systems on the Sierpinski gasket

The dynamical systems on the classical fractals can naturally be obtained with the help of their iterated function systems. In the recent years, different ways have been developed to define dynamical systems on the self similar sets. In this paper, we give composition functions by using expanding an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2021, Vol.35 (7), p.2317-2331
Hauptverfasser: Aslan, Nisa, Saltan, Mustafa, Demir, Bünyamin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The dynamical systems on the classical fractals can naturally be obtained with the help of their iterated function systems. In the recent years, different ways have been developed to define dynamical systems on the self similar sets. In this paper, we give composition functions by using expanding and folding mappings which generate the classical Sierpinski Gasket via the escape time algorithm. These functions also indicate dynamical systems on this fractal. We express the dynamical systems by using the code representations of the points. Then, we investigate whether these dynamical systems are topologically conjugate (equivalent) or not. Finally, we show that the dynamical systems are chaotic in the sense of Devaney and then we also compute and compare the periodic points.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2107317A