Transitive maps in bitopological dynamical systems
This paper introduces fundamental ideas of bitopological dynamical systems. Here, notions of bitopological transitivity, point transitivity, pairwise iterated compactness, weakly bitopological transitivity, etc. are introduced. Later, it is shown that under pairwise homeomorphism, weakly point trans...
Gespeichert in:
Veröffentlicht in: | Filomat 2021, Vol.35 (6), p.2011-2021 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper introduces fundamental ideas of bitopological dynamical systems.
Here, notions of bitopological transitivity, point transitivity, pairwise
iterated compactness, weakly bitopological transitivity, etc. are
introduced. Later, it is shown that under pairwise homeomorphism, weakly
point transitivity implies weakly bitopological transitivity. Moreover,
under pairwise homeomorphism; pairwise compactness and pairwise iterated
compactness are found to be equivalent. Later, we apply our results in the
development process of a human embryo from the zygote until birth. During
the process of biological application, we disprove conjecture 1 of Nada and
Zohny [S. I. Nada, H. Zohny, An application of relative topology in biology.
Chaos, Solitons and Fractals, 42 (2009) 202-204]. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2106011A |