Transitive maps in bitopological dynamical systems

This paper introduces fundamental ideas of bitopological dynamical systems. Here, notions of bitopological transitivity, point transitivity, pairwise iterated compactness, weakly bitopological transitivity, etc. are introduced. Later, it is shown that under pairwise homeomorphism, weakly point trans...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2021, Vol.35 (6), p.2011-2021
Hauptverfasser: Acharjee, Santanu, Goswami, Kabindra, Sarmah, Hemanta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper introduces fundamental ideas of bitopological dynamical systems. Here, notions of bitopological transitivity, point transitivity, pairwise iterated compactness, weakly bitopological transitivity, etc. are introduced. Later, it is shown that under pairwise homeomorphism, weakly point transitivity implies weakly bitopological transitivity. Moreover, under pairwise homeomorphism; pairwise compactness and pairwise iterated compactness are found to be equivalent. Later, we apply our results in the development process of a human embryo from the zygote until birth. During the process of biological application, we disprove conjecture 1 of Nada and Zohny [S. I. Nada, H. Zohny, An application of relative topology in biology. Chaos, Solitons and Fractals, 42 (2009) 202-204].
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2106011A