Better numerical approximation by λ-Durrmeyer-Bernstein type operators

The main object of this paper is to construct a new Durrmeyer variant of the ?-Bernstein type operators which have better features than the classical one. Some results concerning the rate of convergence in terms of the first and second moduli of continuity and asymptotic formulas of these operators...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2021, Vol.35 (4), p.1405-1419
Hauptverfasser: Radu, Voichiţa, Agrawal, Purshottam, Singh, Jitendra
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The main object of this paper is to construct a new Durrmeyer variant of the ?-Bernstein type operators which have better features than the classical one. Some results concerning the rate of convergence in terms of the first and second moduli of continuity and asymptotic formulas of these operators are given. Moreover, we define a bivariate case of these operators and investigate the approximation degree by means of the total and partial modulus of continuity and the Peetre?s K-functional. A Voronovskaja type asymptotic and Gr?ss-Voronovskaja theorem for the bivariate operators is also proven. Further, we introduce the associated GBS (Generalized Boolean Sum) operators and determine the order of convergence with the aid of the mixed modulus of smoothness for the B?gel continuous and B?gel differentiable functions. Finally the theoretical results are analyzed by numerical examples.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2104405R