On similarity of an arbitrary matrix to a block diagonal matrix

Let an n x n -matrix A have m < n (m ? 2) different eigenvalues ?j of the algebraic multiplicity ?j (j = 1,..., m). It is proved that there are ?j x ?j-matrices Aj, each of which has a unique eigenvalue ?j, such that A is similar to the block-diagonal matrix ?D = diag (A1,A2,..., Am). I.e. there...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2021, Vol.35 (4), p.1205-1214
1. Verfasser: Gil’, Michael
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let an n x n -matrix A have m < n (m ? 2) different eigenvalues ?j of the algebraic multiplicity ?j (j = 1,..., m). It is proved that there are ?j x ?j-matrices Aj, each of which has a unique eigenvalue ?j, such that A is similar to the block-diagonal matrix ?D = diag (A1,A2,..., Am). I.e. there is an invertible matrix T, such that T-1AT = ?D. Besides, a sharp bound for the number kT := ||T|||T-1|| is derived. As applications of these results we obtain norm estimates for matrix functions non-regular on the convex hull of the spectra. These estimates generalize and refine the previously published results. In addition, a new bound for the spectral variation of matrices is derived. In the appropriate situations it refines the well known bounds.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2104205G