Fractional order convergence rate estimate of finite-difference method for the heat equation with concentrated capacity
The convergence of difference scheme for initial-boundary value problem for the heat equation with concentrated capacity and time-dependent coefficient of the space derivatives, is considered. Fractional order convergence rate estimate in a special discrete Sobolev norms, compatible with the smoothn...
Gespeichert in:
Veröffentlicht in: | Filomat 2021, Vol.35 (1), p.331-338 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The convergence of difference scheme for initial-boundary value problem for
the heat equation with concentrated capacity and time-dependent coefficient of
the space derivatives, is considered. Fractional order convergence rate
estimate in a special discrete Sobolev norms, compatible with the
smoothness of the coefficient and solution, is proved. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2101331S |