On automorphisms of graded quasi-lie algebras
Let Z be the ring of integers and let K(Z,2n) denote the Eilenberg-MacLane space of type (Z,2n) for n ? 1. In this article, we prove that the graded group Am := Aut(??2mn+1(?K(Z,2n))=torsions) of automorphisms of the graded quasi-Lie algebras ?? 2mn+1(?K(Z,2n)) modulo torsions that preserve the Whit...
Gespeichert in:
Veröffentlicht in: | Filomat 2020, Vol.34 (9), p.3141-3150 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let Z be the ring of integers and let K(Z,2n) denote the Eilenberg-MacLane
space of type (Z,2n) for n ? 1. In this article, we prove that the graded
group Am := Aut(??2mn+1(?K(Z,2n))=torsions) of automorphisms of the graded
quasi-Lie algebras ?? 2mn+1(?K(Z,2n)) modulo torsions that preserve the
Whitehead products is a finite group for m ? 2 and an infinite group for m ?
3, and that the group Aut(?*(K(Z,2n))=torsions) is non-abelian. We extend
and apply those results to techniques in localization (or rationalization)
theory. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2009141L |