On automorphisms of graded quasi-lie algebras

Let Z be the ring of integers and let K(Z,2n) denote the Eilenberg-MacLane space of type (Z,2n) for n ? 1. In this article, we prove that the graded group Am := Aut(??2mn+1(?K(Z,2n))=torsions) of automorphisms of the graded quasi-Lie algebras ?? 2mn+1(?K(Z,2n)) modulo torsions that preserve the Whit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2020, Vol.34 (9), p.3141-3150
Hauptverfasser: Lee, Dae-Woong, Lee, Sunyoung, Kim, Yeonjeong, Lim, Jeong-Eun
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let Z be the ring of integers and let K(Z,2n) denote the Eilenberg-MacLane space of type (Z,2n) for n ? 1. In this article, we prove that the graded group Am := Aut(??2mn+1(?K(Z,2n))=torsions) of automorphisms of the graded quasi-Lie algebras ?? 2mn+1(?K(Z,2n)) modulo torsions that preserve the Whitehead products is a finite group for m ? 2 and an infinite group for m ? 3, and that the group Aut(?*(K(Z,2n))=torsions) is non-abelian. We extend and apply those results to techniques in localization (or rationalization) theory.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2009141L