Toric objects associated with the dodecahedron
In this paper we illustrate a tight interplay between homotopy theory and combinatorics within toric topology by explicitly calculating homotopy and combinatorial invariants of toric objects associated with the dodecahedron. In particular, we calculate the cohomology ring of the (complex and real) m...
Gespeichert in:
Veröffentlicht in: | Filomat 2020, Vol.34 (7), p.2329-2356 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we illustrate a tight interplay between homotopy theory and
combinatorics within toric topology by explicitly calculating homotopy and
combinatorial invariants of toric objects associated with the dodecahedron.
In particular, we calculate the cohomology ring of the (complex and real)
moment-angle manifolds over the dodecahedron, and of a certain quasitoric
manifold and of a related small cover. We finish by studying Massey products
in the cohomology ring of moment-angle manifolds over the dodecahedron and
how the existence of nontrivial Massey products influences the behaviour of
the Poincar? series of the corresponding Pontryagin algebra. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL2007329B |