Toric objects associated with the dodecahedron

In this paper we illustrate a tight interplay between homotopy theory and combinatorics within toric topology by explicitly calculating homotopy and combinatorial invariants of toric objects associated with the dodecahedron. In particular, we calculate the cohomology ring of the (complex and real) m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2020, Vol.34 (7), p.2329-2356
Hauptverfasser: Baralic, Djordje, Grbic, Jelena, Limonchenko, Ivan, Vucic, Aleksandar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we illustrate a tight interplay between homotopy theory and combinatorics within toric topology by explicitly calculating homotopy and combinatorial invariants of toric objects associated with the dodecahedron. In particular, we calculate the cohomology ring of the (complex and real) moment-angle manifolds over the dodecahedron, and of a certain quasitoric manifold and of a related small cover. We finish by studying Massey products in the cohomology ring of moment-angle manifolds over the dodecahedron and how the existence of nontrivial Massey products influences the behaviour of the Poincar? series of the corresponding Pontryagin algebra.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL2007329B