Some quaternion matrix equations involving Φ-Hermicity

Let H be the real quaternion algebra and Hmxn denote the set of all m x n matrices over H. For A ? Hm x n, we denote by A? the n x m matrix obtained by applying ? entrywise to the transposed matrix At, where ? is a nonstandard involution of H. A ? Hnxn is said to be ?-Hermitian if A = A?. In this pa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2019, Vol.33 (16), p.5097-5112
1. Verfasser: He, Zhuo-Heng
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let H be the real quaternion algebra and Hmxn denote the set of all m x n matrices over H. For A ? Hm x n, we denote by A? the n x m matrix obtained by applying ? entrywise to the transposed matrix At, where ? is a nonstandard involution of H. A ? Hnxn is said to be ?-Hermitian if A = A?. In this paper, we construct a simultaneous decomposition of four real quaternion matrices with the same row number (A,B,C,D), where A is ?-Hermitian, and B,C,D are general matrices. Using this simultaneous matrix decomposition, we derive necessary and sufficient conditions for the existence of a solution to some real quaternion matrix equations involving ?-Hermicity in terms of ranks of the given real quaternion matrices. We also present the general solutions to these real quaternion matrix equations when they are solvable. Finally some numerical examples are presented to illustrate the results of this paper. nema
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1916097H