On the convexity of functions
Let A,B, and X be bounded linear operators on a separable Hilbert space such that A,B are positive, X ? ?I, for some positive real number ?, and ? ? [0,1]. Among other results, it is shown that if f(t) is an increasing function on [0,?) with f(0) = 0 such that f(?t) is convex, then ?|||f(?A + (1-?)B...
Gespeichert in:
Veröffentlicht in: | Filomat 2019, Vol.33 (12), p.3773-3781 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let A,B, and X be bounded linear operators on a separable Hilbert space such
that A,B are positive, X ? ?I, for some positive real number ?, and ? ? [0,1]. Among other results, it is shown that if f(t) is an increasing function
on [0,?) with f(0) = 0 such that f(?t) is convex, then ?|||f(?A
+ (1-?)B) + f(?|A-B|)|||?|||?f(A)X + (1-?)Xf (B)||| for every unitarily invariant norm, where ? = min (?,1-?). Applications of our results are given.
nema |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1912773A |