On the convexity of functions

Let A,B, and X be bounded linear operators on a separable Hilbert space such that A,B are positive, X ? ?I, for some positive real number ?, and ? ? [0,1]. Among other results, it is shown that if f(t) is an increasing function on [0,?) with f(0) = 0 such that f(?t) is convex, then ?|||f(?A + (1-?)B...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2019, Vol.33 (12), p.3773-3781
Hauptverfasser: Abu-Asad, Ata, Hirzallah, Omar
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let A,B, and X be bounded linear operators on a separable Hilbert space such that A,B are positive, X ? ?I, for some positive real number ?, and ? ? [0,1]. Among other results, it is shown that if f(t) is an increasing function on [0,?) with f(0) = 0 such that f(?t) is convex, then ?|||f(?A + (1-?)B) + f(?|A-B|)|||?|||?f(A)X + (1-?)Xf (B)||| for every unitarily invariant norm, where ? = min (?,1-?). Applications of our results are given. nema
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1912773A