Caristi type and meir-keeler type fixed point theorems

We generalize the Caristi fixed point theorem by employing a weaker form of continuity and show that contractive type mappings that satisfy the conditions of our theorem provide new solutions to the Rhoades? problem on continuity at fixed point. We also obtain a Meir-Keeler type fixed point theorem...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2019, Vol.33 (12), p.3711-3721
Hauptverfasser: Pant, Abhijit, Pant, R.P., Joshi, M.C.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We generalize the Caristi fixed point theorem by employing a weaker form of continuity and show that contractive type mappings that satisfy the conditions of our theorem provide new solutions to the Rhoades? problem on continuity at fixed point. We also obtain a Meir-Keeler type fixed point theorem which gives a new solution to the Rhoades? problem on the existence of contractive mappings that admit discontinuity at the fixed point. We prove that our theorems characterize completeness of the metric space as well as Cantor?s intersection property. nema
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1912711P