Packing 1-plane Hamiltonian cycles in complete geometric graphs

Counting the number of Hamiltonian cycles that are contained in a geometric graph is #P-complete even if the graph is known to be planar. A relaxation for problems in plane geometric graphs is to allow the geometric graphs to be 1-plane, that is, each of its edges is crossed at most once. We conside...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2019, Vol.33 (6), p.1561-1574
Hauptverfasser: Trao, Hazim, Ali, Niran, Chia, Gek, Kilicman, Adem
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Counting the number of Hamiltonian cycles that are contained in a geometric graph is #P-complete even if the graph is known to be planar. A relaxation for problems in plane geometric graphs is to allow the geometric graphs to be 1-plane, that is, each of its edges is crossed at most once. We consider the following question: For any set P of n points in the plane, how many 1-plane Hamiltonian cycles can be packed into a complete geometric graph Kn? We investigate the problem by taking three different situations of P, namely, when P is in convex position and when P is in wheel configurations position. Finally, for points in general position we prove the lower bound of k - 1 where n = 2k + h and 0 ? h < 2k. In all of the situations, we investigate the constructions of the graphs obtained. nema
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1906561T