Bounds for symmetric division deg index of graphs
LetG = (V,E) be a simple connected graph of order n (?2) and size m, where V(G) = {1, 2,..., n}. Also let ? = d1 ? d2 ?... ? dn = ? > 0, di = d(i), be a sequence of its vertex degrees with maximum degree ? and minimum degree ?. The symmetric division deg index, SDD, was defined in [D. Vukicevic,...
Gespeichert in:
Veröffentlicht in: | Filomat 2019, Vol.33 (3), p.683-698 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | LetG = (V,E) be a simple connected graph of order n (?2) and size m, where
V(G) = {1, 2,..., n}. Also let ? = d1 ? d2 ?... ? dn = ? > 0, di =
d(i), be a sequence of its vertex degrees with maximum degree ? and minimum
degree ?. The symmetric division deg index, SDD, was defined in [D.
Vukicevic, Bond additive modeling 2. Mathematical properties of max-min
rodeg index, Croat. Chem. Acta 83 (2010) 261- 273] as SDD = SDD(G) = ?i~j
d2i+d2j/didj, where i~j means that vertices i and j are adjacent. In
this paper we give some new bounds for this topological index. Moreover, we
present a relation between topological indices of graph.
nema |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1903683D |