A note on the spectrum of discrete Klein-Gordon s-wave equation with eigenparameter dependent boundary condition
This paper is concerned with the boundary value problem (BVP) for the discrete Klein-Gordon equation ?(an-1?yn-1)+(vn-?)2 yn = 0; n ? N and the boundary condition (?0+?1?)y1+(?0+?1)y0 = 0 where (an),(vn) are complex sequences, ?i, ?i ? C, i=0,1 and ? is a eigenparameter. The paper presents Jost solu...
Gespeichert in:
Veröffentlicht in: | Filomat 2019, Vol.33 (2), p.449-455 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the boundary value problem (BVP) for the
discrete Klein-Gordon equation ?(an-1?yn-1)+(vn-?)2 yn = 0; n ? N
and the boundary condition (?0+?1?)y1+(?0+?1)y0 = 0 where (an),(vn) are complex sequences, ?i, ?i ? C, i=0,1 and ? is a eigenparameter.
The paper presents Jost solution, eigenvalues, spectral singularities and
states some theorems concerning quantitative properties of the spectrum of
this BVP under the condition ?n?N exp(?n?)(|1-an| + |vn|) < ? for ?
> 0 and 1/2 ? ? ? 1.
nema |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1902449C |