Convergence theorems of a faster iteration process including multivalued mappings with analytical and numerical examples

In this paper, we first give the modified version of the iteration process of Thakur et al. [15] which is faster than Picard, Mann, Ishikawa, Noor, Agarwal et al. [2] and Abbas et al. [1] processes. Secondly, we prove weak and strong convergence theorems of this iteration process for multivalued qua...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2018, Vol.32 (16), p.5665-5677
Hauptverfasser: Gunduz, Birol, Alagoz, Osman, Akbulut, Sezgin
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we first give the modified version of the iteration process of Thakur et al. [15] which is faster than Picard, Mann, Ishikawa, Noor, Agarwal et al. [2] and Abbas et al. [1] processes. Secondly, we prove weak and strong convergence theorems of this iteration process for multivalued quasi nonexpansive mappings in uniformly convex Banach spaces. Thirdly, we support our theorems with analytical examples. Finally, we compare rates of convergence for multivalued version of iteration processes mentioned above via a numerical example. nema
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1816665G