On k-circulant matrices with the Lucas numbers

Let k be a nonzero complex number. In this paper, we determine the eigenvalues of a k-circulant matrix whose first row is (L1,L2,..., Ln), where Ln is the nth Lucas number, and improve the result which can be obtained from the result of Theorem 7. [28]. The Euclidean norm of such matrix is obtained....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2018, Vol.32 (11), p.4037-4046
1. Verfasser: Radicic, Biljana
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let k be a nonzero complex number. In this paper, we determine the eigenvalues of a k-circulant matrix whose first row is (L1,L2,..., Ln), where Ln is the nth Lucas number, and improve the result which can be obtained from the result of Theorem 7. [28]. The Euclidean norm of such matrix is obtained. Bounds for the spectral norm of a k-circulant matrix whose first row is (L-11, L-12,..., L-1n ) are also investigated. The obtained results are illustrated by examples. nema
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1811037R