On k-circulant matrices with the Lucas numbers
Let k be a nonzero complex number. In this paper, we determine the eigenvalues of a k-circulant matrix whose first row is (L1,L2,..., Ln), where Ln is the nth Lucas number, and improve the result which can be obtained from the result of Theorem 7. [28]. The Euclidean norm of such matrix is obtained....
Gespeichert in:
Veröffentlicht in: | Filomat 2018, Vol.32 (11), p.4037-4046 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let k be a nonzero complex number. In this paper, we determine the
eigenvalues of a k-circulant matrix whose first row is (L1,L2,..., Ln),
where Ln is the nth Lucas number, and improve the result which can be
obtained from the result of Theorem 7. [28]. The Euclidean norm of such
matrix is obtained. Bounds for the spectral norm of a k-circulant matrix
whose first row is (L-11, L-12,..., L-1n ) are also
investigated. The obtained results are illustrated by examples.
nema |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1811037R |