A new aspect of rectifying curves and ruled surfaces in Galilean 3-space

A curve is named as rectifying curve if its position vector always lies in its rectifying plane. There are lots of papers about rectifying curves in Euclidean and Minkowski spaces. In this paper, we give some relations between extended rectifying curves and their modified Darboux vector fields in Ga...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2018, Vol.32 (8), p.2953-2962
Hauptverfasser: Demir, Çetin, Gök, İsmail, Yayli, Yusuf
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A curve is named as rectifying curve if its position vector always lies in its rectifying plane. There are lots of papers about rectifying curves in Euclidean and Minkowski spaces. In this paper, we give some relations between extended rectifying curves and their modified Darboux vector fields in Galilean 3-Space. The other aim of the paper is to introduce the ruled surfaces whose base curve is rectifying curve. Further, we prove that the parameter curve of the surface is a geodesic. nema
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1808953D