Equiconvergence property for spectral expansions related to perturbations of the operator - u''(-x) with initial data

Uniform equiconvergence of spectral expansions related to the second-order differential operators with involution: -u''(-x) and -u''(-x) + q(x)u(x) with the initial data u(-1) = 0, u'(-1) = 0 is obtained. Starting with the spectral analysis of the unperturbed operator, the e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2018, Vol.32 (3), p.1069-1078
Hauptverfasser: Kritskov, Leonid, Sarsenbi, Abdizhahan
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Uniform equiconvergence of spectral expansions related to the second-order differential operators with involution: -u''(-x) and -u''(-x) + q(x)u(x) with the initial data u(-1) = 0, u'(-1) = 0 is obtained. Starting with the spectral analysis of the unperturbed operator, the estimates of the Green?s functions are established and then applied via the contour integrating approach to the spectral expansions. As a corollary, it is proved that the root functions of the perturbed operator form the basis in L2(-1,1) for any complex-valued coefficient q(x) ? L2(-1,1). nema
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1803069K