Equiconvergence property for spectral expansions related to perturbations of the operator - u''(-x) with initial data
Uniform equiconvergence of spectral expansions related to the second-order differential operators with involution: -u''(-x) and -u''(-x) + q(x)u(x) with the initial data u(-1) = 0, u'(-1) = 0 is obtained. Starting with the spectral analysis of the unperturbed operator, the e...
Gespeichert in:
Veröffentlicht in: | Filomat 2018, Vol.32 (3), p.1069-1078 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Uniform equiconvergence of spectral expansions related to the second-order
differential operators with involution: -u''(-x) and -u''(-x) + q(x)u(x)
with the initial data u(-1) = 0, u'(-1) = 0 is obtained. Starting with the
spectral analysis of the unperturbed operator, the estimates of the Green?s
functions are established and then applied via the contour integrating
approach to the spectral expansions. As a corollary, it is proved that the
root functions of the perturbed operator form the basis in L2(-1,1) for
any complex-valued coefficient q(x) ? L2(-1,1).
nema |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1803069K |