Radius of Convexity of Partial Sums of Odd Functions in the Close-to-Convex Family
We consider the class of all analytic and locally univalent functionsfof the form f ( z ) = z + ∑ n = 2 ∞ a 2 n − 1 z 2 n − 1 , | z | 1 , satisfying the condition Re ( 1 + z f ″ ( z ) f ′ ( z ) ) > − 1 2 . We show that every section s 2 n − 1 ( z ) = z + ∑ k = 2 n a 2 k − 1 z 2 k − 1 , off, is co...
Gespeichert in:
Veröffentlicht in: | Filomat 2017-01, Vol.31 (11), p.3519-3529 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the class of all analytic and locally univalent functionsfof the form
f
(
z
)
=
z
+
∑
n
=
2
∞
a
2
n
−
1
z
2
n
−
1
,
|
z
|
1
, satisfying the condition
Re
(
1
+
z
f
″
(
z
)
f
′
(
z
)
)
>
−
1
2
.
We show that every section
s
2
n
−
1
(
z
)
=
z
+
∑
k
=
2
n
a
2
k
−
1
z
2
k
−
1
, off, is convex in the disk
|
z
|
2
/
3
. We also prove that the radius
2
/
3
is best possible, i.e. the number
2
/
3
cannot be replaced by a larger one. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1711519A |