Unimodality of the Independence Polynomials of Some Composite Graphs
Let I(G;x) denote the independence polynomial of a graph G. In this paper we study the unimodality properties of I(G;x) for some composite graphs G. Given two graphs G1 and G2, let G1(G2) denote the lexicographic product of G1 and G2. Assume I ( G 1 ; x ) = ∑ i ≥ 0 a i x i and I ( G 2 ; x ) = ∑ i ≥...
Gespeichert in:
Veröffentlicht in: | Filomat 2017-01, Vol.31 (3), p.629-637 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let I(G;x) denote the independence polynomial of a graph G. In this paper we study the unimodality properties of I(G;x) for some composite graphs G.
Given two graphs G1 and G2, let G1(G2) denote the lexicographic product of G1 and G2. Assume
I
(
G
1
;
x
)
=
∑
i
≥
0
a
i
x
i
and
I
(
G
2
;
x
)
=
∑
i
≥
0
b
i
x
i
where I(G2; x) is log-concave. Then we prove (i) if I(G1; x) is log-concave and
(
a
i
2
−
a
i
−
1
a
i
+
1
)
b
1
2
≥
a
i
a
i
−
1
b
2
for all 1 ≤ i ≤ α(G1), then I(G1[G2]; x) is log-concave; (ii) if ai-1≤ b1aifor 1 ≤ i ≤ α(G1), then I(G1[G2]; x) is unimodal. In particular, if aiis increasing in i, then I(G1[G2]; x) is unimodal. We also give two sufficient conditions when the independence polynomial of a complete multipartite graph is unimodal or log-concave. Finally, for every odd positive integer α > 3, we find a connected graph G not a tree, such that α(G) = α, and I(G;x) is symmetric and has only real zeros. This answers a problem of Mandrescu and Mirică. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1703629Z |