The Constants to Measure the Differences Between Birkhoff and Isosceles Orthogonalities

The notion of orthogonality for vectors in inner product spaces is simple, interesting and fruitful. When moving to normed spaces, we have many possibilities to extend this notion. We consider Birkhoff orthogonality and isosceles orthogonality, which are the most used notions of orthogonality. In 20...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2016-01, Vol.30 (10), p.2761-2770
1. Verfasser: Mizuguchi, Hiroyasu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The notion of orthogonality for vectors in inner product spaces is simple, interesting and fruitful. When moving to normed spaces, we have many possibilities to extend this notion. We consider Birkhoff orthogonality and isosceles orthogonality, which are the most used notions of orthogonality. In 2006, Ji and Wu introduced a geometric constant D(X) to give a quantitative characterization of the difference between these two orthogonality types. However, this constant was considered only in the unit sphere SXof the normed space X. In this paper, we introduce a new geometric constant IB(X) to measure the difference between Birkhoff and isosceles orthogonalities in the entire normed space X. To consider the difference between these orthogonalities, we also treat constant BI(X).
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1610761M