F-evolution algebra

We consider the evolution algebra of a free population generated by an F-quadratic stochastic operator. We prove that this algebra is commutative, not associative and necessarily power-associative. We show that this algebra is not conservative, not stationary, not genetic and not train algebra, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2016, Vol.30 (10), p.2637-2652
Hauptverfasser: Jamilov, Uygun, Ladra, Manuel
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the evolution algebra of a free population generated by an F-quadratic stochastic operator. We prove that this algebra is commutative, not associative and necessarily power-associative. We show that this algebra is not conservative, not stationary, not genetic and not train algebra, but it is a Banach algebra. The set of all derivations of the F-evolution algebra is described. We give necessary conditions for a state of the population to be a fixed point or a zero point of the F-quadratic stochastic operator which corresponds to the F-evolution algebra. We also establish upper estimate of the ?-limit set of the trajectory of the operator. For an F-evolution algebra of Volterra type we describe the full set of idempotent elements and the full set of absolute nilpotent elements. nema
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1610637J