F-evolution algebra
We consider the evolution algebra of a free population generated by an F-quadratic stochastic operator. We prove that this algebra is commutative, not associative and necessarily power-associative. We show that this algebra is not conservative, not stationary, not genetic and not train algebra, but...
Gespeichert in:
Veröffentlicht in: | Filomat 2016, Vol.30 (10), p.2637-2652 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider the evolution algebra of a free population generated by an
F-quadratic stochastic operator. We prove that this algebra is commutative,
not associative and necessarily power-associative. We show that this algebra
is not conservative, not stationary, not genetic and not train algebra, but
it is a Banach algebra. The set of all derivations of the F-evolution
algebra is described. We give necessary conditions for a state of the
population to be a fixed point or a zero point of the F-quadratic stochastic
operator which corresponds to the F-evolution algebra. We also establish
upper estimate of the ?-limit set of the trajectory of the operator. For an
F-evolution algebra of Volterra type we describe the full set of idempotent
elements and the full set of absolute nilpotent elements.
nema |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1610637J |