A Numerical Radius Version of the Arithmetic-Geometric Mean of Operators
In this paper, we obtain some numerical radius inequalities for operators, in particular for positive definite operators A,B a numerical radius and some operator norm versions for arithmetic-geometric mean inequality are obtained, respectively as ω 2 ( A ♯ B ) ⩽ ω ( A 2 + B 2 2 ) − 1 2 inf | | x | |...
Gespeichert in:
Veröffentlicht in: | Filomat 2016-01, Vol.30 (8), p.2139-2145 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we obtain some numerical radius inequalities for operators, in particular for positive definite operators A,B a numerical radius and some operator norm versions for arithmetic-geometric mean inequality are obtained, respectively as
ω
2
(
A
♯
B
)
⩽
ω
(
A
2
+
B
2
2
)
−
1
2
inf
|
|
x
|
|
=
1
δ
(
x
)
,
where δ(x) = 〈(A - B)x,x〈2 , and
|
|
A
|
|
|
|
B
|
|
⩽
1
2
(
|
|
A
2
|
|
+
|
|
B
2
|
|
)
−
1
2
inf
|
|
x
|
|
=
|
|
y
|
|
=
1
δ
(
x
,
y
)
,
where, δ(x, y) = (⟨Ay, y⟩ – ⟨Bx, x⟩)2 : |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1608139S |