Remarks on upper and lower bounds formatching sequencibility of graphs
In 2008, Alspach [The Wonderful Walecki Construction, Bull. Inst. Combin. Appl. 52 (2008) 7-20] defined the matching sequencibility of a graph G to be the largest integer k such that there exists a linear ordering of its edges so that every k consecutive edges in the linear ordering form a matching...
Gespeichert in:
Veröffentlicht in: | Filomat 2016, Vol.30 (8), p.2091-2099 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In 2008, Alspach [The Wonderful Walecki Construction, Bull. Inst. Combin.
Appl. 52 (2008) 7-20] defined the matching sequencibility of a graph G to be
the largest integer k such that there exists a linear ordering of its edges
so that every k consecutive edges in the linear ordering form a matching of
G, which is denoted by ms(G). In this paper, we show that every graph G of
size q and maximum degree ? satisfies 1/2?q/?+1? ? ms(G) ? ?q?1/??1? by
using the edge-coloring of G, and we also improve this lower bound for some
particular graphs. We further discuss the relationship between the matching
sequencibility and a conjecture of Seymour about the existence of the kth
power of a Hamilton cycle.
nema |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1608091C |