On Statistically Convergent Sequences of Closed Sets

In this paper, we give the definitions of statistical inner and outer limits for sequences of closed sets in metric spaces. We investigate some properties of statistical inner and outer limits. For sequences of closed sets if its statistical outer and statistical inner limits coincide, we say that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2016-01, Vol.30 (6), p.1497-1509
Hauptverfasser: Talo, Özer, Sever, Yurdal, Başar, Feyzi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we give the definitions of statistical inner and outer limits for sequences of closed sets in metric spaces. We investigate some properties of statistical inner and outer limits. For sequences of closed sets if its statistical outer and statistical inner limits coincide, we say that the sequence is Kuratowski statistically convergent. We prove some proporties for Kuratowski statistically convergent sequences. Also, we examine the relationship between Kuratowski statistical convergence and Hausdor statistical convergence.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1606497T