The Minimal Total Irregularity of Some Classes of Graphs
In [1], Abdo and Dimitov defined the total irregularity of a graph G = (V, E) as irr t ( G ) = 1 2 ∑ u , v ∈ V | d G ( u ) − d G ( v ) | , where dG(u) denotes the vertex degree of a vertex u ∈ V. In this paper, we investigate the minimal total irregularity of the connected graphs, determine the mini...
Gespeichert in:
Veröffentlicht in: | Filomat 2016-01, Vol.30 (5), p.1203-1211 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In [1], Abdo and Dimitov defined the total irregularity of a graph G = (V, E) as
irr
t
(
G
)
=
1
2
∑
u
,
v
∈
V
|
d
G
(
u
)
−
d
G
(
v
)
|
,
where dG(u) denotes the vertex degree of a vertex u ∈ V. In this paper, we investigate the minimal total irregularity of the connected graphs, determine the minimal, the second minimal, the third minimal total irregularity of trees, unicyclic graphs, bicyclic graphs on n vertices, and propose an open problem for further research. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1605203Z |