A New Approach to the Study of Fixed Point Theory for Simulation Functions

Let (X, d) be a metric space and T : X → X be a mapping. In this work, we introduce the mapping ζ : [0,∞) × [0,∞) → R, called the simulation function and the notion of Z-contraction with respect to ζ which generalize the Banach contraction principle and unify several known types of contractions invo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2015-01, Vol.29 (6), p.1189-1194
Hauptverfasser: Khojasteh, Farshid, Shukla, Satish, Radenović, Stojan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let (X, d) be a metric space and T : X → X be a mapping. In this work, we introduce the mapping ζ : [0,∞) × [0,∞) → R, called the simulation function and the notion of Z-contraction with respect to ζ which generalize the Banach contraction principle and unify several known types of contractions involving the combination of d(Tx, Ty) and d(x, y): The related fixed point theorems are also proved.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1506189K