A New Approach to the Study of Fixed Point Theory for Simulation Functions
Let (X, d) be a metric space and T : X → X be a mapping. In this work, we introduce the mapping ζ : [0,∞) × [0,∞) → R, called the simulation function and the notion of Z-contraction with respect to ζ which generalize the Banach contraction principle and unify several known types of contractions invo...
Gespeichert in:
Veröffentlicht in: | Filomat 2015-01, Vol.29 (6), p.1189-1194 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let (X, d) be a metric space and T : X → X be a mapping. In this work, we introduce the mapping ζ : [0,∞) × [0,∞) → R, called the simulation function and the notion of Z-contraction with respect to ζ which generalize the Banach contraction principle and unify several known types of contractions involving the combination of d(Tx, Ty) and d(x, y): The related fixed point theorems are also proved. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1506189K |