On Some Classes of Generalized Quasi Einstein Manifolds

In the present paper, we investigate generalized quasi Einstein manifolds satisfying some special curvature conditions R·S = 0, R·S = LSQ(g, s), C · S = 0,C̃·S = 0,W̃·S = 0 and W2·S = 0 where R, S,C,C̃,W̃and W2 respectively denote the Riemannian curvature tensor, Ricci tensor, conformal curvature te...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2015-01, Vol.29 (3), p.443-456
Hauptverfasser: Güler, Sinem, Demirbağ, Sezgin Altay
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the present paper, we investigate generalized quasi Einstein manifolds satisfying some special curvature conditions R·S = 0, R·S = LSQ(g, s), C · S = 0,C̃·S = 0,W̃·S = 0 and W2·S = 0 where R, S,C,C̃,W̃and W2 respectively denote the Riemannian curvature tensor, Ricci tensor, conformal curvature tensor, concircular curvature tensor, quasi conformal curvature tensor and W2-curvature tensor. Later, we find some sufficient conditions for a generalized quasi Einstein manifold to be a quasi Einstein manifold and we show the existence of a nearly quasi Einstein manifolds, by constructing a non trivial example.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL1503443G