On Some Classes of Generalized Quasi Einstein Manifolds
In the present paper, we investigate generalized quasi Einstein manifolds satisfying some special curvature conditions R·S = 0, R·S = LSQ(g, s), C · S = 0,C̃·S = 0,W̃·S = 0 and W2·S = 0 where R, S,C,C̃,W̃and W2 respectively denote the Riemannian curvature tensor, Ricci tensor, conformal curvature te...
Gespeichert in:
Veröffentlicht in: | Filomat 2015-01, Vol.29 (3), p.443-456 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In the present paper, we investigate generalized quasi Einstein manifolds satisfying some special curvature conditions R·S = 0, R·S = LSQ(g, s), C · S = 0,C̃·S = 0,W̃·S = 0 and W2·S = 0 where R, S,C,C̃,W̃and W2 respectively denote the Riemannian curvature tensor, Ricci tensor, conformal curvature tensor, concircular curvature tensor, quasi conformal curvature tensor and W2-curvature tensor. Later, we find some sufficient conditions for a generalized quasi Einstein manifold to be a quasi Einstein manifold and we show the existence of a nearly quasi Einstein manifolds, by constructing a non trivial example. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1503443G |