Coordinate Finite Type Rotational Surfaces in Euclidean Spaces
Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and suffici...
Gespeichert in:
Veröffentlicht in: | Filomat 2014-01, Vol.28 (10), p.2131-2140 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2140 |
---|---|
container_issue | 10 |
container_start_page | 2131 |
container_title | Filomat |
container_volume | 28 |
creator | Bayram, Bengü (Kılıç) Arslan, Kadri Önen, Nergiz Bulca, Betül |
description | Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some special examples. |
doi_str_mv | 10.2298/FIL1410131B |
format | Article |
fullrecord | <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL1410131B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24890051</jstor_id><sourcerecordid>24890051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-d066c31d1f6d039ed756ffa18ba2d79347503aebf9a259f5107a9c112eacc793</originalsourceid><addsrcrecordid>eNpNj0tLw0AUhQdRsFZXroXsJXrvPJLMRtDQaCEg2OzD7TxgSk3KTLrov7elIq4OnPNx4GPsHuGJc109N8sWJQIKfLtgMy6hyEELcclmIJTMFVZwzW5S2gBIXshyxl7qcYw2DDS5rAlDOEZ32Lnsa5xoCuNA22y1j56MS1kYssXebIN1NGSr3am7ZVeetsnd_eacdc2iqz_y9vN9Wb-2ueEKptxCURiBFn1hQWhnS1V4T1itidtSC1kqEOTWXhNX2iuEkrRB5I6MOe5z9ni-NXFMKTrf72L4pnjoEfqTef_P_Eg_nOlNmsb4h3JZaQCF4gc2d1SV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coordinate Finite Type Rotational Surfaces in Euclidean Spaces</title><source>JSTOR Mathematics & Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bayram, Bengü (Kılıç) ; Arslan, Kadri ; Önen, Nergiz ; Bulca, Betül</creator><creatorcontrib>Bayram, Bengü (Kılıç) ; Arslan, Kadri ; Önen, Nergiz ; Bulca, Betül</creatorcontrib><description>Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some special examples.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL1410131B</identifier><language>eng</language><publisher>Faculty of Sciences and Mathematics, University of Niš</publisher><subject>College mathematics ; Coordinate systems ; Curvature ; Euclidean space ; Mathematical functions ; Position vectors ; Rotation ; Sine function ; Surfaces of revolution ; Tangents</subject><ispartof>Filomat, 2014-01, Vol.28 (10), p.2131-2140</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24890051$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24890051$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Bayram, Bengü (Kılıç)</creatorcontrib><creatorcontrib>Arslan, Kadri</creatorcontrib><creatorcontrib>Önen, Nergiz</creatorcontrib><creatorcontrib>Bulca, Betül</creatorcontrib><title>Coordinate Finite Type Rotational Surfaces in Euclidean Spaces</title><title>Filomat</title><description>Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some special examples.</description><subject>College mathematics</subject><subject>Coordinate systems</subject><subject>Curvature</subject><subject>Euclidean space</subject><subject>Mathematical functions</subject><subject>Position vectors</subject><subject>Rotation</subject><subject>Sine function</subject><subject>Surfaces of revolution</subject><subject>Tangents</subject><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLw0AUhQdRsFZXroXsJXrvPJLMRtDQaCEg2OzD7TxgSk3KTLrov7elIq4OnPNx4GPsHuGJc109N8sWJQIKfLtgMy6hyEELcclmIJTMFVZwzW5S2gBIXshyxl7qcYw2DDS5rAlDOEZ32Lnsa5xoCuNA22y1j56MS1kYssXebIN1NGSr3am7ZVeetsnd_eacdc2iqz_y9vN9Wb-2ueEKptxCURiBFn1hQWhnS1V4T1itidtSC1kqEOTWXhNX2iuEkrRB5I6MOe5z9ni-NXFMKTrf72L4pnjoEfqTef_P_Eg_nOlNmsb4h3JZaQCF4gc2d1SV</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Bayram, Bengü (Kılıç)</creator><creator>Arslan, Kadri</creator><creator>Önen, Nergiz</creator><creator>Bulca, Betül</creator><general>Faculty of Sciences and Mathematics, University of Niš</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>Coordinate Finite Type Rotational Surfaces in Euclidean Spaces</title><author>Bayram, Bengü (Kılıç) ; Arslan, Kadri ; Önen, Nergiz ; Bulca, Betül</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-d066c31d1f6d039ed756ffa18ba2d79347503aebf9a259f5107a9c112eacc793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>College mathematics</topic><topic>Coordinate systems</topic><topic>Curvature</topic><topic>Euclidean space</topic><topic>Mathematical functions</topic><topic>Position vectors</topic><topic>Rotation</topic><topic>Sine function</topic><topic>Surfaces of revolution</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayram, Bengü (Kılıç)</creatorcontrib><creatorcontrib>Arslan, Kadri</creatorcontrib><creatorcontrib>Önen, Nergiz</creatorcontrib><creatorcontrib>Bulca, Betül</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayram, Bengü (Kılıç)</au><au>Arslan, Kadri</au><au>Önen, Nergiz</au><au>Bulca, Betül</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinate Finite Type Rotational Surfaces in Euclidean Spaces</atitle><jtitle>Filomat</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>28</volume><issue>10</issue><spage>2131</spage><epage>2140</epage><pages>2131-2140</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some special examples.</abstract><pub>Faculty of Sciences and Mathematics, University of Niš</pub><doi>10.2298/FIL1410131B</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0354-5180 |
ispartof | Filomat, 2014-01, Vol.28 (10), p.2131-2140 |
issn | 0354-5180 2406-0933 |
language | eng |
recordid | cdi_crossref_primary_10_2298_FIL1410131B |
source | JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals |
subjects | College mathematics Coordinate systems Curvature Euclidean space Mathematical functions Position vectors Rotation Sine function Surfaces of revolution Tangents |
title | Coordinate Finite Type Rotational Surfaces in Euclidean Spaces |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinate%20Finite%20Type%20Rotational%20Surfaces%20in%20Euclidean%20Spaces&rft.jtitle=Filomat&rft.au=Bayram,%20Beng%C3%BC%20(K%C4%B1l%C4%B1%C3%A7)&rft.date=2014-01-01&rft.volume=28&rft.issue=10&rft.spage=2131&rft.epage=2140&rft.pages=2131-2140&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL1410131B&rft_dat=%3Cjstor_cross%3E24890051%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24890051&rfr_iscdi=true |