Coordinate Finite Type Rotational Surfaces in Euclidean Spaces

Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and suffici...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2014-01, Vol.28 (10), p.2131-2140
Hauptverfasser: Bayram, Bengü (Kılıç), Arslan, Kadri, Önen, Nergiz, Bulca, Betül
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2140
container_issue 10
container_start_page 2131
container_title Filomat
container_volume 28
creator Bayram, Bengü (Kılıç)
Arslan, Kadri
Önen, Nergiz
Bulca, Betül
description Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some special examples.
doi_str_mv 10.2298/FIL1410131B
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL1410131B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24890051</jstor_id><sourcerecordid>24890051</sourcerecordid><originalsourceid>FETCH-LOGICAL-c250t-d066c31d1f6d039ed756ffa18ba2d79347503aebf9a259f5107a9c112eacc793</originalsourceid><addsrcrecordid>eNpNj0tLw0AUhQdRsFZXroXsJXrvPJLMRtDQaCEg2OzD7TxgSk3KTLrov7elIq4OnPNx4GPsHuGJc109N8sWJQIKfLtgMy6hyEELcclmIJTMFVZwzW5S2gBIXshyxl7qcYw2DDS5rAlDOEZ32Lnsa5xoCuNA22y1j56MS1kYssXebIN1NGSr3am7ZVeetsnd_eacdc2iqz_y9vN9Wb-2ueEKptxCURiBFn1hQWhnS1V4T1itidtSC1kqEOTWXhNX2iuEkrRB5I6MOe5z9ni-NXFMKTrf72L4pnjoEfqTef_P_Eg_nOlNmsb4h3JZaQCF4gc2d1SV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Coordinate Finite Type Rotational Surfaces in Euclidean Spaces</title><source>JSTOR Mathematics &amp; Statistics</source><source>JSTOR Archive Collection A-Z Listing</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Bayram, Bengü (Kılıç) ; Arslan, Kadri ; Önen, Nergiz ; Bulca, Betül</creator><creatorcontrib>Bayram, Bengü (Kılıç) ; Arslan, Kadri ; Önen, Nergiz ; Bulca, Betül</creatorcontrib><description>Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some special examples.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL1410131B</identifier><language>eng</language><publisher>Faculty of Sciences and Mathematics, University of Niš</publisher><subject>College mathematics ; Coordinate systems ; Curvature ; Euclidean space ; Mathematical functions ; Position vectors ; Rotation ; Sine function ; Surfaces of revolution ; Tangents</subject><ispartof>Filomat, 2014-01, Vol.28 (10), p.2131-2140</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24890051$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24890051$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>314,780,784,803,832,4024,27923,27924,27925,58017,58021,58250,58254</link.rule.ids></links><search><creatorcontrib>Bayram, Bengü (Kılıç)</creatorcontrib><creatorcontrib>Arslan, Kadri</creatorcontrib><creatorcontrib>Önen, Nergiz</creatorcontrib><creatorcontrib>Bulca, Betül</creatorcontrib><title>Coordinate Finite Type Rotational Surfaces in Euclidean Spaces</title><title>Filomat</title><description>Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some special examples.</description><subject>College mathematics</subject><subject>Coordinate systems</subject><subject>Curvature</subject><subject>Euclidean space</subject><subject>Mathematical functions</subject><subject>Position vectors</subject><subject>Rotation</subject><subject>Sine function</subject><subject>Surfaces of revolution</subject><subject>Tangents</subject><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNpNj0tLw0AUhQdRsFZXroXsJXrvPJLMRtDQaCEg2OzD7TxgSk3KTLrov7elIq4OnPNx4GPsHuGJc109N8sWJQIKfLtgMy6hyEELcclmIJTMFVZwzW5S2gBIXshyxl7qcYw2DDS5rAlDOEZ32Lnsa5xoCuNA22y1j56MS1kYssXebIN1NGSr3am7ZVeetsnd_eacdc2iqz_y9vN9Wb-2ueEKptxCURiBFn1hQWhnS1V4T1itidtSC1kqEOTWXhNX2iuEkrRB5I6MOe5z9ni-NXFMKTrf72L4pnjoEfqTef_P_Eg_nOlNmsb4h3JZaQCF4gc2d1SV</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Bayram, Bengü (Kılıç)</creator><creator>Arslan, Kadri</creator><creator>Önen, Nergiz</creator><creator>Bulca, Betül</creator><general>Faculty of Sciences and Mathematics, University of Niš</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20140101</creationdate><title>Coordinate Finite Type Rotational Surfaces in Euclidean Spaces</title><author>Bayram, Bengü (Kılıç) ; Arslan, Kadri ; Önen, Nergiz ; Bulca, Betül</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c250t-d066c31d1f6d039ed756ffa18ba2d79347503aebf9a259f5107a9c112eacc793</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>College mathematics</topic><topic>Coordinate systems</topic><topic>Curvature</topic><topic>Euclidean space</topic><topic>Mathematical functions</topic><topic>Position vectors</topic><topic>Rotation</topic><topic>Sine function</topic><topic>Surfaces of revolution</topic><topic>Tangents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayram, Bengü (Kılıç)</creatorcontrib><creatorcontrib>Arslan, Kadri</creatorcontrib><creatorcontrib>Önen, Nergiz</creatorcontrib><creatorcontrib>Bulca, Betül</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayram, Bengü (Kılıç)</au><au>Arslan, Kadri</au><au>Önen, Nergiz</au><au>Bulca, Betül</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Coordinate Finite Type Rotational Surfaces in Euclidean Spaces</atitle><jtitle>Filomat</jtitle><date>2014-01-01</date><risdate>2014</risdate><volume>28</volume><issue>10</issue><spage>2131</spage><epage>2140</epage><pages>2131-2140</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some special examples.</abstract><pub>Faculty of Sciences and Mathematics, University of Niš</pub><doi>10.2298/FIL1410131B</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2014-01, Vol.28 (10), p.2131-2140
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL1410131B
source JSTOR Mathematics & Statistics; JSTOR Archive Collection A-Z Listing; EZB-FREE-00999 freely available EZB journals
subjects College mathematics
Coordinate systems
Curvature
Euclidean space
Mathematical functions
Position vectors
Rotation
Sine function
Surfaces of revolution
Tangents
title Coordinate Finite Type Rotational Surfaces in Euclidean Spaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A53%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Coordinate%20Finite%20Type%20Rotational%20Surfaces%20in%20Euclidean%20Spaces&rft.jtitle=Filomat&rft.au=Bayram,%20Beng%C3%BC%20(K%C4%B1l%C4%B1%C3%A7)&rft.date=2014-01-01&rft.volume=28&rft.issue=10&rft.spage=2131&rft.epage=2140&rft.pages=2131-2140&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL1410131B&rft_dat=%3Cjstor_cross%3E24890051%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24890051&rfr_iscdi=true