Coordinate Finite Type Rotational Surfaces in Euclidean Spaces
Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and suffici...
Gespeichert in:
Veröffentlicht in: | Filomat 2014-01, Vol.28 (10), p.2131-2140 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Submanifolds of coordinate finite-type were introduced in [10]. A submanifold of a Euclidean space is called a coordinate finite-type submanifold if its coordinate functions are eigenfunctions of Δ. In the present study we consider coordinate finite-type surfaces in E4. We give necessary and sufficient conditions for generalized rotation surfaces in E4 to become coordinate finite-type. We also give some special examples. |
---|---|
ISSN: | 0354-5180 2406-0933 |
DOI: | 10.2298/FIL1410131B |