EQUIPARTITION OF SPHERE MEASURES BY HYPERPLANES

Measure partition problems are classical problems of geometric combinatorics ([1], [2], [3], [4]) whose solutions often use tools from the equivariant algebraic topology. The potential of the computational obstruction theory approach is partially demonstrated here. In this paper we reprove a result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2006-01, Vol.20 (1), p.1-11
Hauptverfasser: Blagojevic, Pavle, Dimitrijevic-Blagojevic, Aleksandra, Milosevic, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 11
container_issue 1
container_start_page 1
container_title Filomat
container_volume 20
creator Blagojevic, Pavle
Dimitrijevic-Blagojevic, Aleksandra
Milosevic, Marko
description Measure partition problems are classical problems of geometric combinatorics ([1], [2], [3], [4]) whose solutions often use tools from the equivariant algebraic topology. The potential of the computational obstruction theory approach is partially demonstrated here. In this paper we reprove a result of V.V. Makeev [9] about a 6-equipartition of a measure on S2 by three planes. The advantage of our approach is that it can be applied on other more complicated questions of the similar nature.
doi_str_mv 10.2298/FIL0601001B
format Article
fullrecord <record><control><sourceid>jstor_cross</sourceid><recordid>TN_cdi_crossref_primary_10_2298_FIL0601001B</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>24894856</jstor_id><sourcerecordid>24894856</sourcerecordid><originalsourceid>FETCH-LOGICAL-c137b-e25ff732790ed040c4aaf674b73391ecc4b392892658a24a94395aea823ca6123</originalsourceid><addsrcrecordid>eNpNz89LwzAYxvEgCtbpybPQu9S9yZukybEbqSvUtfbHYaeSxhQcyqTx4n_vZCKensuHB76E3FJ4YEyrZV6UIIEC0NUZiRgHmYBGPCcRoOCJoAouyVUIewDOJE8jsjTPfVFnTVd0RbWNqzxu641pTPxksrZvTBuvdvFmV5umLrOtaa_JxWTfgr_53QXpc9OtN0lZPRbrrEwcxXRMPBPTlCJLNfgX4OC4tZNM-Zgiauqd4yNqpjSTQlnGreaohfVWMXRWUoYLcn_6dfMhhNlPw8f8-m7nr4HC8NM6_Gs96ruT3ofPw_xHGVeaKyHxG-tFSi0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>EQUIPARTITION OF SPHERE MEASURES BY HYPERPLANES</title><source>JSTOR</source><source>EZB Electronic Journals Library</source><creator>Blagojevic, Pavle ; Dimitrijevic-Blagojevic, Aleksandra ; Milosevic, Marko</creator><creatorcontrib>Blagojevic, Pavle ; Dimitrijevic-Blagojevic, Aleksandra ; Milosevic, Marko</creatorcontrib><description>Measure partition problems are classical problems of geometric combinatorics ([1], [2], [3], [4]) whose solutions often use tools from the equivariant algebraic topology. The potential of the computational obstruction theory approach is partially demonstrated here. In this paper we reprove a result of V.V. Makeev [9] about a 6-equipartition of a measure on S2 by three planes. The advantage of our approach is that it can be applied on other more complicated questions of the similar nature.</description><identifier>ISSN: 0354-5180</identifier><identifier>EISSN: 2406-0933</identifier><identifier>DOI: 10.2298/FIL0601001B</identifier><language>eng</language><publisher>Faculty of Sciences and Mathematics University of Niš</publisher><subject>Coefficients ; Geometric planes ; Hyperplanes ; Tangent vectors</subject><ispartof>Filomat, 2006-01, Vol.20 (1), p.1-11</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c137b-e25ff732790ed040c4aaf674b73391ecc4b392892658a24a94395aea823ca6123</citedby><cites>FETCH-LOGICAL-c137b-e25ff732790ed040c4aaf674b73391ecc4b392892658a24a94395aea823ca6123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/24894856$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/24894856$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>315,781,785,804,833,4025,27928,27929,27930,58022,58026,58255,58259</link.rule.ids></links><search><creatorcontrib>Blagojevic, Pavle</creatorcontrib><creatorcontrib>Dimitrijevic-Blagojevic, Aleksandra</creatorcontrib><creatorcontrib>Milosevic, Marko</creatorcontrib><title>EQUIPARTITION OF SPHERE MEASURES BY HYPERPLANES</title><title>Filomat</title><description>Measure partition problems are classical problems of geometric combinatorics ([1], [2], [3], [4]) whose solutions often use tools from the equivariant algebraic topology. The potential of the computational obstruction theory approach is partially demonstrated here. In this paper we reprove a result of V.V. Makeev [9] about a 6-equipartition of a measure on S2 by three planes. The advantage of our approach is that it can be applied on other more complicated questions of the similar nature.</description><subject>Coefficients</subject><subject>Geometric planes</subject><subject>Hyperplanes</subject><subject>Tangent vectors</subject><issn>0354-5180</issn><issn>2406-0933</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNpNz89LwzAYxvEgCtbpybPQu9S9yZukybEbqSvUtfbHYaeSxhQcyqTx4n_vZCKensuHB76E3FJ4YEyrZV6UIIEC0NUZiRgHmYBGPCcRoOCJoAouyVUIewDOJE8jsjTPfVFnTVd0RbWNqzxu641pTPxksrZvTBuvdvFmV5umLrOtaa_JxWTfgr_53QXpc9OtN0lZPRbrrEwcxXRMPBPTlCJLNfgX4OC4tZNM-Zgiauqd4yNqpjSTQlnGreaohfVWMXRWUoYLcn_6dfMhhNlPw8f8-m7nr4HC8NM6_Gs96ruT3ofPw_xHGVeaKyHxG-tFSi0</recordid><startdate>20060101</startdate><enddate>20060101</enddate><creator>Blagojevic, Pavle</creator><creator>Dimitrijevic-Blagojevic, Aleksandra</creator><creator>Milosevic, Marko</creator><general>Faculty of Sciences and Mathematics University of Niš</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20060101</creationdate><title>EQUIPARTITION OF SPHERE MEASURES BY HYPERPLANES</title><author>Blagojevic, Pavle ; Dimitrijevic-Blagojevic, Aleksandra ; Milosevic, Marko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c137b-e25ff732790ed040c4aaf674b73391ecc4b392892658a24a94395aea823ca6123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Coefficients</topic><topic>Geometric planes</topic><topic>Hyperplanes</topic><topic>Tangent vectors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blagojevic, Pavle</creatorcontrib><creatorcontrib>Dimitrijevic-Blagojevic, Aleksandra</creatorcontrib><creatorcontrib>Milosevic, Marko</creatorcontrib><collection>CrossRef</collection><jtitle>Filomat</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blagojevic, Pavle</au><au>Dimitrijevic-Blagojevic, Aleksandra</au><au>Milosevic, Marko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>EQUIPARTITION OF SPHERE MEASURES BY HYPERPLANES</atitle><jtitle>Filomat</jtitle><date>2006-01-01</date><risdate>2006</risdate><volume>20</volume><issue>1</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>0354-5180</issn><eissn>2406-0933</eissn><abstract>Measure partition problems are classical problems of geometric combinatorics ([1], [2], [3], [4]) whose solutions often use tools from the equivariant algebraic topology. The potential of the computational obstruction theory approach is partially demonstrated here. In this paper we reprove a result of V.V. Makeev [9] about a 6-equipartition of a measure on S2 by three planes. The advantage of our approach is that it can be applied on other more complicated questions of the similar nature.</abstract><pub>Faculty of Sciences and Mathematics University of Niš</pub><doi>10.2298/FIL0601001B</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0354-5180
ispartof Filomat, 2006-01, Vol.20 (1), p.1-11
issn 0354-5180
2406-0933
language eng
recordid cdi_crossref_primary_10_2298_FIL0601001B
source JSTOR; EZB Electronic Journals Library
subjects Coefficients
Geometric planes
Hyperplanes
Tangent vectors
title EQUIPARTITION OF SPHERE MEASURES BY HYPERPLANES
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-13T22%3A38%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=EQUIPARTITION%20OF%20SPHERE%20MEASURES%20BY%20HYPERPLANES&rft.jtitle=Filomat&rft.au=Blagojevic,%20Pavle&rft.date=2006-01-01&rft.volume=20&rft.issue=1&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=0354-5180&rft.eissn=2406-0933&rft_id=info:doi/10.2298/FIL0601001B&rft_dat=%3Cjstor_cross%3E24894856%3C/jstor_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_jstor_id=24894856&rfr_iscdi=true