EQUIPARTITION OF SPHERE MEASURES BY HYPERPLANES

Measure partition problems are classical problems of geometric combinatorics ([1], [2], [3], [4]) whose solutions often use tools from the equivariant algebraic topology. The potential of the computational obstruction theory approach is partially demonstrated here. In this paper we reprove a result...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Filomat 2006-01, Vol.20 (1), p.1-11
Hauptverfasser: Blagojevic, Pavle, Dimitrijevic-Blagojevic, Aleksandra, Milosevic, Marko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Measure partition problems are classical problems of geometric combinatorics ([1], [2], [3], [4]) whose solutions often use tools from the equivariant algebraic topology. The potential of the computational obstruction theory approach is partially demonstrated here. In this paper we reprove a result of V.V. Makeev [9] about a 6-equipartition of a measure on S2 by three planes. The advantage of our approach is that it can be applied on other more complicated questions of the similar nature.
ISSN:0354-5180
2406-0933
DOI:10.2298/FIL0601001B