ORTHOGONAL DIRICHLET POLYNOMIALS WITH CONSTANT WEIGHT
Let { λ j } j = 1 ∞ be a sequence of distinct positive numbers. We analyze the orthogonal Dirichlet polynomials {ψn,T } formed from linear combinations of { λ j − i t } j = 1 n , associated with constant (or Legendre) weight on [−T,T]. Thus 1 2 T ∫ − T T ψ n , T ( t ) ψ m , T ( t ) ¯ d t = δ m n . M...
Gespeichert in:
Veröffentlicht in: | Applicable analysis and discrete mathematics 2019-12, Vol.13 (3), p.697-710 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
{
λ
j
}
j
=
1
∞
be a sequence of distinct positive numbers. We analyze the orthogonal Dirichlet polynomials {ψn,T
} formed from linear combinations of
{
λ
j
−
i
t
}
j
=
1
n
, associated with constant (or Legendre) weight on [−T,T]. Thus
1
2
T
∫
−
T
T
ψ
n
,
T
(
t
)
ψ
m
,
T
(
t
)
¯
d
t
=
δ
m
n
. Moreover, we analyze how these polynomials behave as T varies. |
---|---|
ISSN: | 1452-8630 2406-100X |
DOI: | 10.2298/AADM190714027L |