ORTHOGONAL DIRICHLET POLYNOMIALS WITH CONSTANT WEIGHT

Let { λ j } j = 1 ∞ be a sequence of distinct positive numbers. We analyze the orthogonal Dirichlet polynomials {ψn,T } formed from linear combinations of { λ j − i t } j = 1 n , associated with constant (or Legendre) weight on [−T,T]. Thus 1 2 T ∫ − T T ψ n , T ( t ) ψ m , T ( t ) ¯ d t = δ m n . M...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable analysis and discrete mathematics 2019-12, Vol.13 (3), p.697-710
1. Verfasser: Lubinsky, Doron S.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let { λ j } j = 1 ∞ be a sequence of distinct positive numbers. We analyze the orthogonal Dirichlet polynomials {ψn,T } formed from linear combinations of { λ j − i t } j = 1 n , associated with constant (or Legendre) weight on [−T,T]. Thus 1 2 T ∫ − T T ψ n , T ( t ) ψ m , T ( t ) ¯ d t = δ m n . Moreover, we analyze how these polynomials behave as T varies.
ISSN:1452-8630
2406-100X
DOI:10.2298/AADM190714027L