SPARSE REGULARIZED FUZZY REGRESSION

In this work, we focus on two things: First, in addition to the data measurement uncertainty, we develop a novel probabilistic model by imposing the additive noise in the classical fuzzy regression model. We obtain the baseline LS estimation as the maximum likelihood estimation for regression parame...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applicable analysis and discrete mathematics 2019-10, Vol.13 (2), p.583-604
Hauptverfasser: Rapaić, Danilo, Krstanović, Lidija, Ralević, Nebojša, Obradović, Ratko, Klipa, Djuro
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we focus on two things: First, in addition to the data measurement uncertainty, we develop a novel probabilistic model by imposing the additive noise in the classical fuzzy regression model. We obtain the baseline LS estimation as the maximum likelihood estimation for regression parameters. Moreover, by assuming the heavy tail distribution and by introducing the Huber norm instead of square in the cost function, we obtain more general robust fuzzy M-estimator, much more suitable for modeling the outliers often present in the data sets.
ISSN:1452-8630
2406-100X
DOI:10.2298/AADM171227021R