LAND SURFACE TEMPERATURE RETRIEVAL FROM THE THERMAL RADIANCE COLLECTED BY LANDSAT 8 TIRS SENSOR: APPLICATIONS OF FIELD AND LABORATORY MEASUREMENTS
Land surface temperature (LST) is an important parameter in the investigation of environmental and climatic changes at various scales. However, estimating this parameter from the radiation emitted in the thermal infrared (TIR) region is a difficult task because the radiation measured by the satelli...
Gespeichert in:
Veröffentlicht in: | Revista brasileira de geofisica 2020-03, Vol.38 (1) |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Land surface temperature (LST) is an important parameter in the investigation of environmental and climatic changes at various scales. However, estimating this parameter from the radiation emitted in the thermal infrared (TIR) region is a difficult task because the radiation measured by the satellite sensors is strongly affected by atmospheric effects. All LST retrieval methods require validation with field measurements. Nonetheless, the validation of this type of data is a challenge because the LST changes rapidly in time and the measurements must be performed together with the sensor overpass. In addition, most methodologies are developed and tested focusing on the Northern Hemisphere. Considering that operational ways of obtaining LST should be constantly investigated, the aim of this paper was to study the effect of the use of temperature-based laboratory measurements in the determination of the emissivity and LST retrieval from orbital remote sensing data. Moreover, it was intended to perform a comparative analysis among the most recent single-channel algorithms available on the literature, applied to band 10 (10.6-11.19 μm) of the Landsat 8 TIRS. The algorithms considered were: Single-Channel generalized (SC), Improved Single-channel (ISC) and Improved Mono-window (IMW). A field of coastal dunes was chosen as study area. Two sets of laboratory emissivity measurements were performed with field samples at different temperatures using a Fourier Transform Infrared (FT-IR). Emissivity and temperature data were obtained in the study area concomitantly with the satellite overpass. The Radiative Transfer Equation (RTE) with parameters of global atmospheric profiles was tested as a method of validation. A variation of approximately 2% in the emissivity in relation to the temperature was observed, which could be neglected. The FT-IR presents limitations on the period to acquire stability, however as long as this limitation is respected and the calibration approach correctly carried out, laboratory measurements can achieve optimum accuracy and replace field validation. Available spectral libraries of emissivity have also proved to be a good alternative. All evaluated single-channel methods are suitable for obtaining LST; however, ISC provided superior results in all analyzes, producing higher R² (0.99978) and lower RMSE (0.019) relative to the other algorithms tested.RECUPERAÇÃO DE TEMPERATURA DE SUPERFÍCIE TERRESTRE DA RADIÂNCIA TERMAL COLETADA PELO SENSOR TI |
---|---|
ISSN: | 0102-261X 1809-4511 |
DOI: | 10.22564/rbgf.v38i1.2039 |