Analysis of TSP: Simulated Annealing and Genetic Algorithm Approaches

This paper analyzes the performance of the popular heuristic methods ‘Simulated Annealing (SA)’ and ‘Genetic Algorithm (GA)’  on  the symmetric TSP.  TSP is a well-known combinatorial optimization problem in NP-complete class. NP-completeness of TSP originates many specific approximation algorithms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International Journal of Computational and Experimental Science and Engineering 2020-03, Vol.6 (1), p.23-28
Hauptverfasser: BOTSALI, Ahmet Reha, ALAYKIRAN, Kemal
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper analyzes the performance of the popular heuristic methods ‘Simulated Annealing (SA)’ and ‘Genetic Algorithm (GA)’  on  the symmetric TSP.  TSP is a well-known combinatorial optimization problem in NP-complete class. NP-completeness of TSP originates many specific approximation algorithms to find optimal or near optimal solutions in a reasonable time. On the other hand, both SA and GA are general purpose heuristic methods that are applicable to almost every kind of problem whose solution lies inside a search space. The performance of SA and GA depends on many factors such as the nature of the problem, design of the algorithm, parameter values, etc. In this paper, a GA and an SA algorithm are given  and their performance with re-spect to several factors is analyzed. The algorithms are tested on some benchmark problems (TSPLIB) which are obtainable via Internet from http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html.
ISSN:2149-9144
2149-9144
DOI:10.22399/ijcesen.637445