Analysis of TSP: Simulated Annealing and Genetic Algorithm Approaches
This paper analyzes the performance of the popular heuristic methods ‘Simulated Annealing (SA)’ and ‘Genetic Algorithm (GA)’ on the symmetric TSP. TSP is a well-known combinatorial optimization problem in NP-complete class. NP-completeness of TSP originates many specific approximation algorithms...
Gespeichert in:
Veröffentlicht in: | International Journal of Computational and Experimental Science and Engineering 2020-03, Vol.6 (1), p.23-28 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper analyzes the performance of the popular heuristic methods ‘Simulated Annealing (SA)’ and ‘Genetic Algorithm (GA)’ on the symmetric TSP. TSP is a well-known combinatorial optimization problem in NP-complete class. NP-completeness of TSP originates many specific approximation algorithms to find optimal or near optimal solutions in a reasonable time. On the other hand, both SA and GA are general purpose heuristic methods that are applicable to almost every kind of problem whose solution lies inside a search space. The performance of SA and GA depends on many factors such as the nature of the problem, design of the algorithm, parameter values, etc. In this paper, a GA and an SA algorithm are given and their performance with re-spect to several factors is analyzed. The algorithms are tested on some benchmark problems (TSPLIB) which are obtainable via Internet from http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsp/index.html. |
---|---|
ISSN: | 2149-9144 2149-9144 |
DOI: | 10.22399/ijcesen.637445 |