Logistic Growth Modeling with Markov Chain Monte Carlo Estimation
A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to e...
Gespeichert in:
Veröffentlicht in: | Journal of modern applied statistical methods 2020-04, Vol.18 (1), p.2-18 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 18 |
---|---|
container_issue | 1 |
container_start_page | 2 |
container_title | Journal of modern applied statistical methods |
container_volume | 18 |
creator | Choi, Jaehwa Chen, Jinsong Harring, Jeffery R. |
description | A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes. |
doi_str_mv | 10.22237/jmasm/1556669820 |
format | Article |
fullrecord | <record><control><sourceid>crossref</sourceid><recordid>TN_cdi_crossref_primary_10_22237_jmasm_1556669820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_22237_jmasm_1556669820</sourcerecordid><originalsourceid>FETCH-LOGICAL-c288t-a1f7317ea4b777648539344832e8ebf791bdee1d85c3961e6bf06e5331bc557d3</originalsourceid><addsrcrecordid>eNpNkM1OwzAQhC0EEqXwANz8AqG2N_7JsYpKQQriAufISTatSxIj26Li7QkFCU4zo9GsVh8ht5zdCSFArw6jjeOKS6mUKoxgZ2TBJZisyLU4_-cvyVWMB8YECKMXZF35nYvJtXQb_DHt6ZPvcHDTjh7dd7LhzX_Qcm_dNFdTQlraMHi6mTejTc5P1-Sit0PEm19dktf7zUv5kFXP28dyXWWtMCZllvcauEabN1prlRsJBeS5AYEGm14XvOkQeWdkC4XiqJqeKZQAvGml1B0sCf-52wYfY8C-fg_zC-Gz5qw-MahPDOo_BvAFiIRQTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Logistic Growth Modeling with Markov Chain Monte Carlo Estimation</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Choi, Jaehwa ; Chen, Jinsong ; Harring, Jeffery R.</creator><creatorcontrib>Choi, Jaehwa ; Chen, Jinsong ; Harring, Jeffery R.</creatorcontrib><description>A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes.</description><identifier>ISSN: 1538-9472</identifier><identifier>EISSN: 1538-9472</identifier><identifier>DOI: 10.22237/jmasm/1556669820</identifier><language>eng</language><ispartof>Journal of modern applied statistical methods, 2020-04, Vol.18 (1), p.2-18</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c288t-a1f7317ea4b777648539344832e8ebf791bdee1d85c3961e6bf06e5331bc557d3</citedby><cites>FETCH-LOGICAL-c288t-a1f7317ea4b777648539344832e8ebf791bdee1d85c3961e6bf06e5331bc557d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Choi, Jaehwa</creatorcontrib><creatorcontrib>Chen, Jinsong</creatorcontrib><creatorcontrib>Harring, Jeffery R.</creatorcontrib><title>Logistic Growth Modeling with Markov Chain Monte Carlo Estimation</title><title>Journal of modern applied statistical methods</title><description>A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes.</description><issn>1538-9472</issn><issn>1538-9472</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpNkM1OwzAQhC0EEqXwANz8AqG2N_7JsYpKQQriAufISTatSxIj26Li7QkFCU4zo9GsVh8ht5zdCSFArw6jjeOKS6mUKoxgZ2TBJZisyLU4_-cvyVWMB8YECKMXZF35nYvJtXQb_DHt6ZPvcHDTjh7dd7LhzX_Qcm_dNFdTQlraMHi6mTejTc5P1-Sit0PEm19dktf7zUv5kFXP28dyXWWtMCZllvcauEabN1prlRsJBeS5AYEGm14XvOkQeWdkC4XiqJqeKZQAvGml1B0sCf-52wYfY8C-fg_zC-Gz5qw-MahPDOo_BvAFiIRQTA</recordid><startdate>20200428</startdate><enddate>20200428</enddate><creator>Choi, Jaehwa</creator><creator>Chen, Jinsong</creator><creator>Harring, Jeffery R.</creator><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20200428</creationdate><title>Logistic Growth Modeling with Markov Chain Monte Carlo Estimation</title><author>Choi, Jaehwa ; Chen, Jinsong ; Harring, Jeffery R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c288t-a1f7317ea4b777648539344832e8ebf791bdee1d85c3961e6bf06e5331bc557d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Choi, Jaehwa</creatorcontrib><creatorcontrib>Chen, Jinsong</creatorcontrib><creatorcontrib>Harring, Jeffery R.</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of modern applied statistical methods</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Choi, Jaehwa</au><au>Chen, Jinsong</au><au>Harring, Jeffery R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Logistic Growth Modeling with Markov Chain Monte Carlo Estimation</atitle><jtitle>Journal of modern applied statistical methods</jtitle><date>2020-04-28</date><risdate>2020</risdate><volume>18</volume><issue>1</issue><spage>2</spage><epage>18</epage><pages>2-18</pages><issn>1538-9472</issn><eissn>1538-9472</eissn><abstract>A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes.</abstract><doi>10.22237/jmasm/1556669820</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1538-9472 |
ispartof | Journal of modern applied statistical methods, 2020-04, Vol.18 (1), p.2-18 |
issn | 1538-9472 1538-9472 |
language | eng |
recordid | cdi_crossref_primary_10_22237_jmasm_1556669820 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
title | Logistic Growth Modeling with Markov Chain Monte Carlo Estimation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T22%3A23%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Logistic%20Growth%20Modeling%20with%20Markov%20Chain%20Monte%20Carlo%20Estimation&rft.jtitle=Journal%20of%20modern%20applied%20statistical%20methods&rft.au=Choi,%20Jaehwa&rft.date=2020-04-28&rft.volume=18&rft.issue=1&rft.spage=2&rft.epage=18&rft.pages=2-18&rft.issn=1538-9472&rft.eissn=1538-9472&rft_id=info:doi/10.22237/jmasm/1556669820&rft_dat=%3Ccrossref%3E10_22237_jmasm_1556669820%3C/crossref%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |