Logistic Growth Modeling with Markov Chain Monte Carlo Estimation

A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of modern applied statistical methods 2020-04, Vol.18 (1), p.2-18
Hauptverfasser: Choi, Jaehwa, Chen, Jinsong, Harring, Jeffery R.
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A new growth modeling approach is proposed to can fit inherently nonlinear (i.e., logistic) function without constraint nor reparameterization. A simulation study is employed to investigate the feasibility and performance of a Markov chain Monte Carlo method within Bayesian estimation framework to estimate a fully random version of a logistic growth curve model under manipulated conditions such as the number and timing of measurement occasions and sample sizes.
ISSN:1538-9472
1538-9472
DOI:10.22237/jmasm/1556669820