On edge irregularity strength of cycle-star graphs
For a simple graph G, a vertex labeling ϕ : V (G) → {1, 2, . . . , k} is called k-labeling. The weight of an edge uv in G, written wϕ(uv), is the sum of the labels of end vertices u and v, i.e., wϕ(uv) = ϕ(u) + ϕ(v). A vertex k-labeling is defined to be an edge irregular k-labeling of the graph G if...
Gespeichert in:
Veröffentlicht in: | Proyecciones (Antofagasta, Chile) Chile), 2024-05, Vol.43 (3), p.725-741 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a simple graph G, a vertex labeling ϕ : V (G) → {1, 2, . . . , k} is called k-labeling. The weight of an edge uv in G, written wϕ(uv), is the sum of the labels of end vertices u and v, i.e., wϕ(uv) = ϕ(u) + ϕ(v). A vertex k-labeling is defined to be an edge irregular k-labeling of the graph G if for every two distinct edges u and v, wϕ(u) ̸= wϕ(v). The minimum k for which the graph G has an edge irregular k-labeling is called the edge irregularity strength of G, written es(G). In this paper, we study the edge irregular k-labeling for cycle-star graph CSk,n−k and determine the exact value for cycle-star graph for 3 ≤ k ≤ 7 and n − k ≥ 1. Finally, we make a conjecture for the edge irregularity strength of CSk,n−k for k ≥ 8 and n − k ≥ 1. |
---|---|
ISSN: | 0717-6279 0717-6279 |
DOI: | 10.22199/issn.0717-6279-5801 |