The Connected and Forcing Connected Restrained Monophonic Numbers of a Graph
For a connected graph G = (V,E) of order at least two, a connected restrained monophonic set S of G is a restrained monophonic set such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected restrained monophonic set of G is the connected restrained monophonic numbe...
Gespeichert in:
Veröffentlicht in: | Proyecciones (Antofagasta, Chile) Chile), 2024-04, Vol.43 (2), p.311-329 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For a connected graph G = (V,E) of order at least two, a connected restrained monophonic set S of G is a restrained monophonic set such that the subgraph G[S] induced by S is connected. The minimum cardinality of a connected restrained monophonic set of G is the connected restrained monophonic number of G and is denoted by mcr(G). We determine bounds for it and find the same for some special classes of graphs. It is shown that, if a, b and p are positive integers such that 3 ≤ a ≤ b ≤ p, p−1 6= a, p−1 6= b, then there exists a connected graph G of order p, mr(G) = a and mcr(G) = b. Also, another parameter forcing connected restrained monophonic number fcrm(G) of a graph G is introduced and several interesting results and realization theorems are proved. |
---|---|
ISSN: | 0717-6279 0717-6279 |
DOI: | 10.22199/issn.0717-6279-5390 |