THE D_p^q (∆^+r )-STATISTICAL CONVERGENCE
Let p(n) and q(n) be nondecreasing sequence of positive integers such that p(n) < q(n) and limn→∞ q(n) = ∞ holds. For any r ∈ Z^+, we define D_p,q^+r- statistical convergence of ∆^+r x where ∆^+r is r- th difference of the sequence (x_n). The main results in this paper consist in determining sets...
Gespeichert in:
Veröffentlicht in: | Facta universitatis. Series, mathematics and informatics mathematics and informatics, 2020-05, p.405 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let p(n) and q(n) be nondecreasing sequence of positive integers such that p(n) < q(n) and limn→∞ q(n) = ∞ holds. For any r ∈ Z^+, we define D_p,q^+r- statistical convergence of ∆^+r x where ∆^+r is r- th difference of the sequence (x_n). The main results in this paper consist in determining sets of sequences χ and χ' of the form [D_ p^q]_0 α satisfying χ ⊂ [D_p^q]_0(∆^+r ) ⊂ χ ' and sets φ and φ' of the form [D_p^q]_α satisfying φ ≤ [D_p^q]_∞(∆^+r ) ≤ φ' . |
---|---|
ISSN: | 0352-9665 2406-047X |
DOI: | 10.22190/FUMI2002405B |